JEE Mains Syllabus 2025 PDF (Out): Download Physics, Chemistry & Mathematics

The JEE Main syllabus 2025, released by NTA on October 29, 2024, includes topics from Physics, Chemistry, Mathematics, Aptitude, and Drawing for BTech/BE, BArch, and BPlan programs. Explore the complete JEE Main 2025 syllabus in this article.

JEE Main Syllabus

NTA (The National Testing Agency) has released the JEE Main 2025 syllabus PDF. Candidates can check the syllabus here to guide their exam preparation. The JEE Main syllabus includes topics from Class 11 and 12 Physics, Chemistry, and Mathematics. To effectively cover the syllabus, candidates can refer to NCERT books for these subjects.

NTA has removed several topics from the JEE Main syllabus for Physics, Chemistry, and Mathematics in previous years. Candidates are advised to refer to the official JEE Main 2025 syllabus, available here, to ensure they study only the relevant topics. No questions will be asked from the reduced syllabus. Candidates can download the JEE Main 2025 syllabus PDF from the provided link or directly from jeemain.nta.ac.in. The exam questions will strictly follow the syllabus prescribed by NTA.

Topics Removed from JEE Main Syllabus 2025

The NTA has not made any changes to the JEE Main 2025 syllabus PDF by removing topics. However, several topics were removed from the syllabus in the previous year. The following topics were deleted from the JEE Main syllabus:

  • Mathematics: Mathematical Induction and Mathematical Reasoning units have been removed. 
  • Physics: In Physics, the Communication Device unit has been removed from the syllabus. 
  • Chemistry: Surface Chemistry, States of Matter, General Principles and Processes of Isolation of Metals, s-block elements, Hydrogen, Environmental Chemistry, Alcohol Phenol and Ether, and Polymers chapters have been removed.

Removed Chapters from JEE Main Syllabus 2025

Candidates can find the list of chapters removed from Physics, Chemistry, and Mathematics in the JEE Main 2025 syllabus in the table below:

SubjectRemoved Chapters
PhysicsCapacitors and Capacitance
Communication Device
A few topics are removed from the Experimental Skills
ChemistryPhysical quantities and their measurements in Chemistry, precision, and accuracy, significant figures
States of Matter
Thomson and Rutherford’s atomic models and their limitations
Surface Chemistry
s-Block Elements
General Principles and Processes of Isolation of Metals
Hydrogen
Environmental Chemistry
Polymers
Chemistry in Everyday Life
MathematicsMathematical Induction
Mathematical Reasoning
A few topics are removed from Three Dimensional Geometry.

JEE Main Syllabus 2025

The JEE Main 2025 syllabus PDF for both Paper 1 (B.E./B.Tech) and Paper 2 (B.Arch/B.Plan) is available for download on the official website. Candidates are encouraged to refer to NCERT 11th and 12th solutions for exam preparation. By thoroughly reviewing the NTA JEE Main exam syllabus 2025, students can ensure a solid grasp of the key topics. Additionally, previous year JEE Main subject-wise syllabi are available in this article to aid candidates in starting their preparation.

JEE Main Physics Syllabus 2025

The JEE Main 2025 Physics syllabus covers essential topics such as units of measurement, motion in a straight line, force and inertia, work-energy theorem, Kepler’s laws, stress-strain relationship, Hooke’s Law, reflection of light, spherical mirrors, and Faraday’s law. Candidates can download the complete JEE Main Physics syllabus 2025 online. For detailed information, refer to the table below for the JEE Main syllabus PDF download provided by NTA.

UnitsTopics
Unit 1: Physics and MeasurementPhysics, technology, and society, S I Units, fundamental and derived units, least count, accuracy and precision of measuring instruments, measurement errors, Dimensions of Physics quantities, dimensional analysis, and its applications.
Unit 2: KinematicsThe frame of reference, motion in a straight line, Position- time graph, speed and velocity; Uniform and non-uniform motion, average speed and instantaneous velocity, uniformly accelerated motion, velocity-time, position-time graph, relations for uniformly accelerated motion, Scalars and Vectors, Vector. Addition and subtraction, zero vector, scalar and vector products, Unit Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion.
Unit 3: Laws of MotionForce and inertia, Newton’s First law of motion; Momentum, Newton’s Second Law of motion, Impulses; Newton’s Third Law of motion. Law of conservation of linear momentum and its applications. Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction. Dynamics of uniform circular motion: centripetal force and its applications.
Unit 4: Work, Energy and PowerWork done by a content force and a variable force; kinetic and potential energies, work-energy theorem, power.The potential energy of spring conservation of mechanical energy, conservative and neoconservative forces; Elastic and inelastic collisions in one and two dimensions.
Unit 5: Rotational MotionCentre of the mass of a two-particle system, Centre of the mass of a rigid body; Basic concepts of rotational motion; a moment of a force; torque, angular momentum, conservation of angular momentum and its applications; the moment of inertia, the radius of gyration. Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems, and their applications. Rigid body rotation equations of rotational motion.
Unit 6: GravitationThe universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Kepler’s law of planetary motion. Gravitational potential energy; gravitational potential. Escape velocity, Orbital velocity of a satellite. Geo stationary satellites.
Unit 7: Properties of Solids and LiquidsElastic behaviour, Stress-strain relationship, Hooke’s Law. Young’s modulus, bulk modulus, modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its applications. Viscosity. Stokes’ law. terminal velocity, streamline, and turbulent flow. Reynolds number. Bernoulli’s principle and its applications. Surface energy and surface tension, angle of contact, application of surface tension – drops, bubbles, and capillary rise. Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat. Heat transfer-conduction, convection, and radiation. Newton’s law of cooling.
Unit 8: ThermodynamicsThermal equilibrium, zeroth law of thermodynamics, the concept of temperature. Heat, work, and internal energy. The first law of thermodynamics. The second law of thermodynamics: reversible and irreversible processes. Carnot engine and its efficiency.
Unit 9: Kinetic Theory of GasesEquation of state of a perfect gas, work done on compressing a gas, Kinetic theory of gases – assumptions, the concept of pressure. Kinetic energy and temperature: RMS speed of gas molecules: Degrees of freedom. Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path. Avogadro’s number.
Unit 10: Oscillation and WavesPeriodic motion – period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase: oscillations of a spring -restoring force and force constant: energy in S.H.M. – Kinetic and potential energies; Simple pendulum – derivation of expression for its time period: Free, forced and damped oscillations, resonance. Wave motion. Longitudinal and transverse waves, speed of a wave. Displacement relation for a progressive wave. Principle of superposition of waves, a reflection of waves. Standing waves in strings and organ pipes, fundamental mode and harmonics. Beats. Doppler Effect in sound
Unit 11: ElectrostaticsElectric charges: Conservation of charge. Coulomb’s law forces between two point charges, forces between multiple charges: superposition principle and continuous charge distribution. Electric field: Electric field due to a point charge, Electric field lines. Electric dipole, Electric field due to a dipole. Torque on a dipole in a uniform electric field.Electric flux: Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet, and uniformly charged thin spherical shell. Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field.Conductors and insulators: Dielectrics and electric polarization, capacitor, the combination of capacitors in series and parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates. Energy stored in a capacitor.
Unit 12: Current ElectricityElectric current. Drift velocity. Ohm’s law. Electrical resistance. Resistances of different materials. V-l characteristics of Ohmic and non-ohmic conductors. Electrical energy and power. Electrical resistivity. Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance. Electric Cell and its Internal resistance, potential difference and emf of a cell, a combination of cells in series and parallel. Kirchhoff’s laws and their applications. Wheatstone bridge. Metre Bridge. Potentiometer – principle and its applications.
Unit 13: Magnetic Effect of Current and MagnetismBiot – Savart law and its application to current carrying circular loop. Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Cyclotron.Force on a current-carrying conductor in a uniform magnetic field. The force between two parallel currents carrying conductors-definition of ampere. Torque experienced by a current loop in a uniform magnetic field: Moving coil galvanometer, its current sensitivity, and conversion to ammeter and voltmeter.Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para-, dia- and ferromagnetic substances. Magnetic susceptibility and permeability. Hysteresis. Electromagnets and permanent magnets.
Unit 14: Electromagnetic Induction and Alternating CurrentElectromagnetic induction: Faraday’s law. Induced emf and current: Lenz’s Law, Eddy currents. Self and mutual inductance. Alternating currents, peak and RMS value of alternating current/ voltage: reactance and impedance: LCR series circuit, resonance: Quality factor, power in AC circuits, wattless current. AC generator and transformer.
Unit 15: Electromagnetic WavesElectromagnetic waves and their characteristics, Transverse nature of electromagnetic waves, Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet. X-rays. Gamma rays), Applications of e.m. waves.
Unit 16: OpticsReflection and refraction of light at plane and spherical surfaces, mirror formula. Total internal reflection and its applications. Deviation and Dispersion of light by a; prism; Lens Formula. Magnification. Power of a Lens. Combination of thin lenses in contact. Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers.Wave opticswavefront and Huygens’ principle. Laws of reflection and refraction using Huygens principle. Interference, Young’s double-slit experiment and expression for fringe width, coherent sources, and sustained interference of light. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes. Polarization, plane-polarized light: Brewster’s law, uses of plane-polarized light and Polaroid.
Unit 17: Dual Nature of Matter and RadiationDual nature of radiation. Photoelectric effect. Hertz and Lenard’s observations; Einstein’s photoelectric equation: particle nature of light. Matter waves-wave nature of particle, de Broglie relation. Davisson-Germer experiment.
Unit 18: Atoms and NucleiAlpha-particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars: isotones. Radioactivity- alpha. beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission, and fusion.
Unit 19: Electronic DevicesSemiconductors; semiconductor diode: 1-V characteristics in forward and reverse bias; diode as a rectifier; I-V characteristics of LED. the photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor: transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR. AND. NOT. NAND and NOR). Transistor as a switch.

JEE Main Chemistry Syllabus 2025

The detailed JEE Main 2025 Chemistry syllabus is divided into three sections: Physical, Organic, and Inorganic Chemistry. The Chemistry section of the JEE Main syllabus includes a total of 28 chapters. Candidates can refer to the syllabus to understand the topics covered in each section and prepare accordingly for the exam.

JEE Main Physical Chemistry Syllabus 2025

UnitsTopics
Unit 1: Some Basic Concepts in ChemistryMatter and its nature, Dalton’s atomic theory: Concept of atom, molecule, element, and compound: Physical quantities and their measurements in Chemistry, precision, and accuracy, significant figures. S.I.Units, dimensional analysis: Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae: Chemical equations and stoichiometry.
Unit 2: Atomic StructureThomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of the hydrogen atom. Bohr model of a hydrogen atom – its postulates, derivation of the relations for the energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, de Broglie’s relationship. Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanics, the quantum mechanical model of the atom, its important features. Concept of atomic orbitals as one-electron wave functions: Variation of Y and Y2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum, and magnetic quantum numbers) and their significance; shapes of s, p, and d – orbitals, electron spin and spin quantum number: Rules for filling electrons in orbitals – Aufbau principle. Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.
Unit 3: Chemical Bonding and Molecular StructureKossel – Lewis approach to chemical bond formation, the concept of ionic and covalent bonds.Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy. Covalent Bonding: Concept of electronegativity. Fajan’s rule, dipole moment: Valence Shell Electron Pair Repulsion (VSEPR ) theory and shapes of simple molecules. Quantum mechanical approach to covalent bonding: Valence bond theory – its important features, the concept of hybridization involving s, p, and d orbitals; Resonance. Molecular Orbital Theory – Its important features. LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, the concept of bond order, bond length, and bond energy. Elementary idea of metallic bonding. Hydrogen bonding and its applications.
Unit 4: Chemical ThermodynamicsFundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes. The first law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization, and solution. The second law of thermodynamics – Spontaneity of processes; DS of the universe and DG of the system as criteria for spontaneity. DG° (Standard Gibbs energy change) and equilibrium constant.
Unit 5: SolutionsDifferent methods for expressing the concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), the vapour pressure of solutions and Raoult’s Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and nonideal solutions; Colligative properties of dilute solutions – a relative lowering of vapour pressure, depression of freezing point, the elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance.
Unit 6: EquilibriumMeaning of equilibrium, the concept of dynamic equilibrium. Equilibria involving physical processes: Solid-liquid, liquid – gas and solid-gas equilibria, Henry’s law. General characteristics of equilibrium involving physical processes. Equilibrium involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, the significance of DG and DG° in chemical equilibrium, factors affecting equilibrium concentration, pressure, temperature, the effect of catalyst; Le Chatelier’s principle. Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius. Bronsted – Lowry and Lewis) and their ionization, acid-base equilibria (including multistage ionization) and ionization constants, ionization of water. pH scale, common ion effect, hydrolysis of salts and pH of their solutions, the solubility of sparingly soluble salts and solubility products, buffer solutions.
Unit 7: Redox Reactions and ElectrochemistryElectronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions. Electrolytic and metallic conduction, conductance in electrolytic solutions, molar conductivities and their variation with concentration: Kohlrausch’s law and its applications. Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement: Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change: Dry cell and lead accumulator; Fuel cells.
Unit 8: Chemical KineticsRate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure, and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first-order reactions, their characteristics and half-lives, the effect of temperature on the rate of reactions, Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).

JEE Main Inorganic Chemistry Syllabus 2025

In this section, Candidates can check the topics included in JEE Main Inorganic Chemistry Syllabus 2025:

UnitsTopics
Unit 9: Classification of Elements and Periodicity in PropertiesModem periodic law and present form of the periodic table, s, p. d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states, and chemical reactivity.
Unit 10: p-block elementsGroup -13 to Group 18 Elements
General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group. Groupwise study of the p – block elements
Group -13
Preparation, properties, and uses of boron and aluminum; Structure, properties, and uses of borax, boric acid, diborane, boron trifluoride, aluminum chloride, and alums.
Group -14
The tendency for catenation; Structure, properties, and uses of Allotropes and oxides of carbon, silicon tetrachloride, silicates, zeolites, and silicones.
Group -15
Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure, and uses of ammonia, nitric acid, phosphine, and phosphorus halides, (PCl3. PCl5); Structures of oxides and oxoacids of nitrogen and phosphorus.
Group -16
Preparation, properties, structures, and uses of ozone: Allotropic forms of sulphur; Preparation, properties, structures, and uses of sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.
Group-17
Preparation, properties, and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.
Group-18
Unit 11: d- and f-block elementsTransition Elements
General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first-row transition elements – physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties, and uses of K2Cr2O7, and KMnO4.
Inner Transition Elements
Lanthanoids – Electronic configuration, oxidation states, and lanthanoid contraction.
Actinoids – Electronic configuration and oxidation states.
Unit 12: Coordination CompoundsIntroduction to coordination compounds. Werner’s theory; ligands, coordination number, denticity. chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

JEE Main Organic Chemistry Syllabus 2025

In this section, Candidates can check the topics included in JEE Main Organic Chemistry Syllabus 2025:

UnitsTopics
Unit 13: Purification and Characterization of Organic CompoundsPurification – Crystallization, sublimation, distillation, differential extraction, and chromatography – principles and their applications.
Qualitative analysis – Detection of nitrogen, sulphur, phosphorus, and halogens.
Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus. Calculations of empirical formulae and molecular formulae: Numerical problems in organic quantitative analysis
Unit 14: Some Basic Principles of Organic ChemistryTetravalency of carbon: Shapes of simple molecules – hybridization (s and p): Classification of organic compounds based on functional groups: and those containing halogens, oxygen, nitrogen, and sulphur; Homologous series: Isomerism – structural and stereoisomerism. Nomenclature (Trivial and IUPAC)Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations, and carbanions; stability of carbocations and free radicals, electrophiles, and nucleophiles. Electronic displacement in a covalent bond – Inductive effect, electromeric effect, resonance, and hyperconjugation.Common types of organic reactions- Substitution, addition, elimination, and rearrangement.
Unit 15: HydrocarbonsClassification, isomerism, IUPAC nomenclature, general methods of preparation, properties, and reactions.Alkanes – Conformations: Sawhorse and Newman projections (of ethane): Mechanism of halogenation of alkanes.
Alkenes – Geometrical isomerism: Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoffs and peroxide effect): Ozonolysis and polymerization.
Alkynes – Acidic character: Addition of hydrogen, halogens, water, and hydrogen halides: Polymerization.Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity: Mechanism of electrophilic substitution: halogenation, nitration.
Friedel – Craft’s alkylation and acylation, directive influence of the functional group in monosubstituted benzene.
Unit 16: Organic Compounds containing HalogenGeneral methods of preparation, properties, and reactions; Nature of C-X bond; Mechanisms of substitution reactions.Uses; Environmental effects of chloroform, iodoform freons, and DDT.
Unit 17: Organic Compounds containing OxygenGeneral methods of preparation, properties, reactions, and uses.ALCOHOLS, PHENOLS, AND ETHERS
Alcohols: Identification of primary, secondary, and tertiary alcohols: mechanism of dehydration. Phenols: Acidic nature, electrophilic substitution reactions: halogenation. nitration and sulphonation. Reimer – Tiemann reaction.Ethers: Structure.
Aldehyde and Ketones: Nature of carbonyl group; Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as – Nucleophilic addition reactions (addition of HCN. NH3, and its derivatives), Grignard reagent; oxidation: reduction (Wolf Kishner and Clemmensen); the acidity of a-hydrogen. aldol condensation, Cannizzaro reaction. Haloform reaction, Chemical tests to distinguish between aldehydes and Ketones.Carboxylic Acids Acidic strength and factors affecting it
Unit 18: Organic Compounds containing NitrogenGeneral methods of preparation. Properties, reactions, and uses.
Amines: Nomenclature, classification structure, basic character, and identification of primary, secondary, and tertiary amines and their basic character.
Diazonium Salts: Importance in synthetic organic chemistry.
Unit 19: BiomoleculesGeneral introduction and importance of biomolecules.
CARBOHYDRATES – Classification; aldoses and ketoses: monosaccharides (glucose and fructose) and constituent monosaccharides of oligosaccharides (sucrose, lactose, and maltose).
PROTEINS – Elementary Idea of a-amino acids, peptide bond, polypeptides. Proteins: primary, secondary, tertiary, and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.
VITAMINS – Classification and functions.
NUCLEIC ACIDS – Chemical constitution of DNA and RNA. Biological functions of nucleic acids
Unit 20: Principles Related to Practical ChemistryDetection of extra elements (Nitrogen, Sulphur, halogens) in organic compounds; Detection of the following functional groups; hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketones) carboxyl, and amino groups in organic compounds.· The chemistry involved in the preparation of the following:
Inorganic compounds; Mohr’s salt, potash alum.
Organic compounds: Acetanilide, p-nitro acetanilide, aniline yellow, iodoform.· The chemistry involved in the titrimetric exercises – Acids, bases and the use of indicators, oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4· Chemical principles involved in the qualitative salt analysis
Chemical principles involved in the following experiments:1. Enthalpy of solution of CuSO4
2. Enthalpy of neutralization of strong acid and strong base.
3. Preparation of lyophilic and lyophobic sols.
4. Kinetic study of the reaction of iodide ions with hydrogen peroxide at room temperature.

JEE Main Mathematics Syllabus 2025

Students preparing for JEE Main 2025 can explore the detailed Maths syllabus, which includes 28 chapters according to the latest NTA JEE Main 2025 syllabus PDF. The syllabus covers key topics that candidates should focus on for their preparation. By reviewing the syllabus, students can ensure they are well-prepared for the Maths section of the exam.

UnitsTopics
Unit 1: Sets, Relations and FunctionsSets and their representation: Union, intersection and complement of sets and their algebraic properties; Power set; Relation, Type of relations, equivalence relations, functions; one-one, into and onto functions, the composition of functions
Unit 2: Complex Numbers and Quadratic EquationsComplex numbers as ordered pairs of reals, Representation of complex numbers in the form a + ib and their representation in a plane, Argand diagram, algebra of complex number, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality, Quadratic equations in real and complex number system and their solutions Relations between roots and co-efficient, nature of roots, the formation of quadratic equations with given roots.
Unit 3: Matrices and DeterminantsMatrices, algebra of matrices, type of matrices, determinants, and matrices of order two and three, properties of determinants, evaluation of determinants, area of triangles using determinants, Adjoint, and evaluation of inverse of a square matrix using determinants and elementary transformations, Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices
Unit 4: Permutation and CombinationThe fundamental principle of counting, permutation as an arrangement and combination as section, Meaning of P (n,r) and C (n,r), simple applications
Unit 5: Binomial Theorem and its Simple ApplicationsBinomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients, and simple applications
Unit 6: Sequence and SeriesArithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given numbers, Relation between A.M and G.M sum up to n terms of special series; Sn, Sn2, Sn3. Arithmetico-Geometric progression
Unit 7: Limit, Continuity and DifferentiabilityReal–valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic, and exponential functions, inverse function. Graphs of simple functions. Limits, continuity, and differentiability. Differentiation of the sum, difference, product, and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order up to two, Rolle’s and Lagrange’s Mean value Theorems, Applications of derivatives: Rate of change of quantities, monotonic Increasing and decreasing functions, Maxima and minima of functions of one variable, tangents and normal.
Unit 8: Integral CalculusIntegral as an anti-derivative, Fundamental Integrals involving algebraic, trigonometric, exponential, and logarithms functions. Integrations by substitution, by parts, and by partial functions. Integration using trigonometric identities. Integral as limit of a sum. The fundamental theorem of calculus, properties of definite integrals. Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.
Unit 9: Differential EquationsOrdinary differential equations, their order, and degree, the formation of differential equations, solution of differential equation by the method of separation of variables, solution of a homogeneous and linear differential equation
Unit 10: Co-ordinate GeometryCartesian system of rectangular coordinates in a plane, distance formula, sections formula, locus, and its equation, translation of axes, the slope of a line, parallel and perpendicular lines, intercepts of a line on the co-ordinate axis.Straight lineVarious forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines, the distance of a point form a line, equations of internal and external by sectors of angles between two lines co-ordinate of the centroid, orthocentre, and circumcentre of a triangle, equation of the family of lines passing through the point of intersection of two lines.Circle, conic sections
A standard form of equations of a circle, the general form of the equation of a circle, its radius and central, equation of a circle when the endpoints of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent, sections of conics, equations of conic sections (parabola, ellipse, and hyperbola) in standard forms, condition for Y = mx +c to be a tangent and point (s) of tangency
Unit 11: Three Dimensional GeometryCoordinates of a point in space, the distance between two points, section formula, directions ratios, and direction cosines, the angle between two intersecting lines. Skew lines, the shortest distance between them, and its equation. Equations of a line and a plane in different forms, the intersection of a line and a plane, and coplanar lines.
Unit 12: Vector AlgebraVectors and scalars, the addition of vectors, components of a vector in two dimensions and three-dimensional space, scalar and vector products, scalar and vector triple product.
Unit 13: Statistics and ProbabilityMeasures of discretion; calculation of mean, median, mode of grouped and ungrouped data calculation of standard deviation, variance and mean deviation for grouped and ungrouped data. Probability: Probability of an event, addition and multiplication theorems of probability, Baye’s theorem, probability distribution of a random variate, Bernoulli trials, and binomial distribution.
Unit 14: TrigonometryTrigonometrical identities and equations, trigonometrical functions, inverse trigonometrical functions, and their properties, heights, and distance

JEE Mains Syllabus 2025 For Physics Chapter-Wise Weightage

Candidates can check Physics Chapter-Wise Weightage for the topics included in JEE Main Physics below

ChaptersTotal QuestionsWeightage
Electrostatics13.3%
Capacitors 13.3%
Simple Harmonic Motion13.3%
Sound Waves13.3%
Elasticity13.3%
Error in Measurement13.3%
Circular Motion13.3%
Electromagnetic Waves13.3%
Semiconductors13.3%
Magnetic Effect of Current and Magnetism26.6%
Alternating Current26.6%
Kinetic Theory of Gases & Thermodynamics26.6%
Kinematics26.6%
Work, Energy, and Power26.6%
Laws of Motion26.6%
Centre Of Mass26.6%
Rotational Dynamics26.6%
Modern Physics26.6%
Wave Optics26.6%
Current Electricity39.9%

JEE Main Syllabus 2025 Chemistry Chapter-Wise Weightage

Candidates can check Chemistry Chapter-Wise Weightage for  the topics included in JEE Main Chemistry below

ChaptersTotal QuestionsWeightage
Mole Concept13.3%
Redox Reactions 13.3%
Electrochemistry 13.3%
Chemical Kinetics 13.3%
Solution & Colligative Properties 13.3%
General Organic Chemistry 13.3%
Stereochemistry 13.3%
Hydrocarbon 13.3%
Alkyl Halides 13.3%
Carboxylic Acids & their Derivatives 13.3%
Carbohydrates, Amino-Acids, and Polymers 13.3%
Aromatic Compounds 13.3%
Atomic Structure26.6%
Chemical Bonding26.6%
Chemical And Ionic Equilibrium26.6%
Solid-State And Surface Chemistry26.6%
Nuclear & Environmental Chemistry26.6%
Thermodynamics & the Gaseous State26.6%
Transition Elements & Coordination Compounds39.9%
Periodic table, p-Block Elements 39.9%

JEE Main Syllabus 2025 Maths Chapter-Wise Weightage

Candidates can check Maths Chapter-Wise Weightage for  the topics included in JEE Main Maths below:

ChaptersTotal QuestionsWeightage
Sets13.3%
Permutations & Combinations13.3%
Probability13.3%
Complex Numbers13.3%
Binominal Theorem13.3%
Limits13.3%
Differentiability13.3%
Indefinite Integration13.3%
Definite Integration13.3%
Differential Equations13.3%
Height & Distance13.3%
Trigonometric Equations13.3%
The Area under the Curve13.3%
Quadratic Equations 13.3%
Vectors13.3%
Tangents and Normals13.3%
Maxima and Minima13.3%
Statistics13.3%
Parabola13.3%
Ellipse13.3%
Hyperbola13.3%
Sequences & Series26.6%
Straight Lines 26.6%
3-D Geometry 26.6%
Determinants 26.6%

JEE Main Syllabus 2025 for B.Planning/B.Arch

The second paper of JEE Main 2025 is for candidates applying for B.Arch or B.Planning courses. The JEE Main 2025 syllabus for these courses is divided into three sections: Mathematics, Aptitude, and Drawing, each focusing on essential skills for architectural and planning studies. Candidates should thoroughly review each section to ensure comprehensive preparation for the exam.

Part IMathematicsAwareness of persons, places, Buildings, and Materials. Objects, Texture related to Architecture and build—environment. Visualising three-dimensional objects from two-dimensional drawings. Visualising. different sides of three-dimensional objects. Analytical Reasoning Mental Ability (Visual, Numerical and Verbal).
Part IIAptitudeThree-dimensional – perception: Understanding and appreciation of scale and proportion of objects, building forms and elements, colour texture, harmony and contrast. Design and drawing of geometrical or abstract shapes and patterns in pencil. Transformation of forms both 2 D and 3 D union, subtraction, rotation, development of surfaces and volumes, Generation of Plan, elevations and 3 D views of objects. Creating two-dimensional and three-dimensional compositions using given shapes and forms. Sketching of scenes and activities from memory of urbanscape (public space, market, festivals, street scenes, monuments, recreational spaces, etc.), landscape (river fronts, jungles, trees, plants, etc.) and rural life.

JEE Main Syllabus 2025 Planning

This section contains questions from the following categories: Social Science, Thinking Skills, and General Awareness. The topics covered in the JEE Main Planning Syllabus 2025 are listed in the table below.

TopicsSub Topics
Social Science Types of resources, agriculture, water, mineral resources, industries, national economy; Human SettlementsPower-sharing, federalism, political parties, democracy, the Indian ConstitutionEconomic development- economic sectors, globalization, the concept of development, poverty; Population structure, social exclusion, and inequality, urbanization, rural development, colonial cities, The idea of nationalism, nationalism in India, pre-modern world, 19th-century global economy, colonialism and colonial cities, industrialisation, resources and development 
General Awareness General Awareness questions and knowledge about prominent cities, development issues, government programs, etc. 
Thinking Skills critical reasoning; understanding of charts, graphs, and tables; basic concepts of statistics and quantitative reasoning, Comprehension (unseen passage); map reading skills, scale, distance, direction, area etc 

JEE aspirants aiming for B.Arch or B.Planning courses must thoroughly understand the JEE Main Paper 2 syllabus. A clear grasp of the syllabus helps students allocate study time effectively, prioritize high-weightage topics, tackle challenging subjects, and plan revision sessions strategically.

It is essential to review the JEE Main B.Arch/B.Planning syllabus in detail before starting preparation. This ensures candidates focus on relevant topics, avoid unnecessary study, and make the best use of their time. Below are the key topics included in the JEE Main 2025 syllabus for Paper 2, designed for students pursuing B.Arch or B.Planning programs.

Read More Articles:

JEE NotificationJEE Mains Cutoff
JEE Mains Eligibility CriteriaJEE Mains Counseling
JEE Mains Exam PatternJEE Mains Seat Matrix
JEE Mains Admit Card

JEE Mains Syllabus 2025 FAQ’s:

Q. What is the syllabus for JEE Main 2025?

A. The JEE Main 2025 syllabus includes Physics, Chemistry, and Mathematics for B.E./B.Tech, and additional Aptitude and Drawing for B.Arch/B.Planning courses.

Q. Can I complete the JEE Main syllabus in 6 months?

A. Yes, with a focused study plan, prioritizing important topics, regular revisions, and consistent practice of mock tests, the JEE Main syllabus can be completed in 6 months.

Q. When will the authorities release JEE Main Syllabus 2025?

A. NTA released the JEE Main 2025 syllabus on October 29, 2024. Candidates can download the syllabus PDF from the official website, jeemain.nta.nic.in.

Q. Is the JEE Main syllabus been reduced for 2025?

A. The JEE Main 2025 syllabus has not been reduced. It includes Physics, Chemistry, and Mathematics topics from Classes 11 and 12 as per the NTA guidelines.

Q. Is jee 2025 syllabus released?

A. Yes, the JEE Main 2025 syllabus has been released by NTA. Candidates can download the detailed syllabus PDF from the official website, jeemain.nta.nic.in.

Q. Is JEE Main 2025 Syllabus Changed?

A. No, the JEE Main 2025 syllabus remains unchanged. Candidates can refer to the detailed syllabus PDF available on the official website, jeemain.nta.nic.in.

Q. Is there any syllabus change in JEE 2025?

A. No changes have been made to the JEE Main 2025 syllabus. Candidates can download the official syllabus PDF from jeemain.nta.nic.in for exam preparation.

Q. Where can I get JEE Main 2025 syllabus PDF?

A. Candidates can download the JEE Main 2025 syllabus PDF for both Papers 1 and 2 from the official website, jeemain.nta.nic.in, to start their preparation.

Q. Is JEE Main syllabus tough?

A. The JEE Main syllabus is considered challenging as it covers in-depth topics from Physics, Chemistry, and Mathematics of Classes 11 and 12, requiring thorough preparation.

Q. What are the main subjects of JEE Main?

A. The main subjects of JEE Main are Physics, Chemistry, and Mathematics, covering topics from Class 11 and 12 as per the official syllabus prescribed by NTA.

5/5 - (1 vote)

    You have successfully subscribed to the newsletter

    There was an error while trying to send your request. Please try again.

    MBBS MD MS Admission 2024 will use the information you provide on this form to be in touch with you and to provide updates and marketing.